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Abstract. Finite-size scaling and transfer-matrix techni 
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8 ,  23 11 SB Leiden, The Nether- 

ues are used to determine the 
conformal anomaly and critical exponents of O(n) models on the square lattice. These 
calculations were performed on five branches of critical points parametrised by n. The 
results for two of the branches agree with the known universal properties of the O ( n )  
model as derived for the honeycomb lattice. Finite-size convergence is poor for most of 
the third branch, so that in this case the classification in terms of known models is uncertain. 
Our data show that the fourth branch can be interpreted in terms of a combination of a 
low-temperature O(n) and a critical k ing  model. Finally, the numerical results for the 
O(n) model on the remaining branch agree accurately with the known results for the 
low-temperature O( n + 1) model. We prove this equivalence by means of an exact mapping. 

1. Introduction 

The O( n )  model was originally defined [ 13 as a system of n-dimensional vectors (spins) 
which interact in a rotationally invariant way. For a specific choice of the interactions 
between the spins, the partition function can be expressed [2] in terms of a loop gas. 
In this model, n is a continuous variable. The equivalence between the O(n) spin 
model and the loop gas has made it possible to derive some exact information about 
the critical O(n) model. In particular for the honeycomb O(n) model, some results 
were obtained [3,4] in the range - 2  S n S 2 from a mapping of the loop model onto 
the Coulomb gas. More recently, Bethe ansatz solutions [S-71 of vertex model rep- 
resentations of the honeycomb loop model have been found. Thus, the asymptotic 
finite-size dependence of several eigenvalues of the transfer matrix could be determined 
[6]. Comparison with the theory of conformal invariance [8-101 in critical models 
yielded the conformal anomaly and several critical dimensions, confirming earlier 
results [3,4, 11-13]. 

Very recently Nienhuis [14] investigated an O(n) model with the n-component 
spins on the middle of the edges of a square lattice. The Boltzmann weight for each 
spin configuration is the product over all vertices of the lattice of the local weight 

where the spins s1 through s4 sit on the four edges incident on the vertex and are 
labelled anticlockwise. Expansion of the partition sum in powers of the coupling 
constants U, v and w turns the model into a loop gas [2]. The configurations of this 
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1416 H W J Blote and B Nienhuis 

loop gas are the graphs 3 consisting of non-intersecting closed polygons covering 
some (or none) of the edges of the square lattice. Each vertex is visited zero, one or 
two times by these polygons and thus has one of the nine appearances shown in figure 
1, and a weight 1, U, U or w accordingly. The partition sum is 

The exponents denote the number of vertices of the type indicated, and the number 
of loops. While the configurations of this loop gas can be interpreted as the diagrams 
in the high-temperature expansion of the O(n)  model defined by (1.11, they can also 
be seen as the low-temperature expansion of a cubic model, of which the n-component 
spins, sitting on the faces of the lattice, point to the corners of a hypercube [2]. Two 
spins on adjacent faces may differ in at most one spin component. Weights are 
associated with configurations around each vertex, and are equal to 1 when all four 
spins are parallel, U when one spin differs from the other three, U when one pair of 
adjacent spins differs form the other pair, 2w when one pair of diagonally opposed 
spins differs from the other pair, w when two diagonally opposed spins are equal and 
the other two are different from the first and from each other, and 0 when all four 
spins are different. These three interpretations of the same partition sum will be referred 
to as O ( n )  model, loop gas and corner-cubic model respectively. 

Nienhuis [14] has found a set of critical points of this model. This set can be 
divided into five curves parametrised by n, which will, for easy reference, be labelled 
as branch 0 to branch 4. The weights U, U and w for branch 0 are 

u = w = $  v = o .  (1.3) 

The four remaining branches, on which the model turns out to be equivalent to a 
nineteen-vertex model studied by Izergin and Korepin [ 151 and others [ 161, are given 
by 

w = (2-[ 1 - 2 sin( e/2)][ 1 + 2 sin( e/2)i2}-] 

U = *4w sin( 8/2) cos( ~ / 4  - 814) 

u = * w[ 1 + 2 sin( 8/2)] 

n = -2 cos(28). 

(1.4) 

. 
t 0 - e  J. . 

e . . . 
0 .  . . 

Or 7' * ! .  + - 
1 U V W 

Figure 1 .  The Boltzmann weights of the nine vertices that occur in the loop model 
representation o f t h e  O ( n )  model. The points indicate the sites of the n-component spins 
on the middle of the edges of the simple quadratic lattice. The vertices are divided into 
four groups. The weights are normalised such that empty vertices have weight one. 
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The branches are intervals in 8 
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Since vertices of type U occur an even number of times, the sign of U is irrelevant, 
and we may choose U 2 0 without loss of generality. But the sign of U is of some 
importance in the case of periodic boundaries: the weight of loops closing over the 
periodic boundary depends on the sign of U, at least for odd system sizes. However, 
we expect that such effects become unimportant in the bulk limit and we will restrict 
ourselves to U 3 0 when no mention of the sign is made. The w-type vertices may occur 
in even as well in odd numbers, irrespective of system sizes and boundary conditions. 
Therefore, there is no arbitrariness in the sign of w in (1 .4) .  

While the O ( n )  model has been argued to be critical on these five branches, the 
classification of the critical behaviour in terms of universality classes remains to be 
found. In order to tackle this problem, it is very helpful that the theory of conformal 
invariance has established relations between the finite-size amplitudes of two- 
dimensional models, and their scaling dimensions. One key result of the theory of 
conformal invariance [&lo] is that a model can be characterised by the central charge 
c. This quantity is related to the finite-size dependence of the free energy. For an 
L x a system with periodic boundaries in the L direction, the free energy f per vertex 
behaves asymptotically as [ 10, 13,171 

f ( L )  =f(a) + 57c/(6L2) (1.5) 
and the correlation lengths behave asymptotically linear in the system size: 

[ ; ‘ ( L )  2 2 i?X, /L  (1 .6)  
where X ,  is the scaling dimension and tr the correlation length of the ith operator 
[18]. Besides, for c C  1 ,  the central charge and the scaling dimensions are related by 
the Kac formula [8,9]. Parametrising c by 

6 
m ( m + l )  

the scaling dimensions for scalar operators satisfy 

c = l -  (1 .7 )  

where p ,  and q, are integers that are characteristic for the ith operator. 

transfer matrix as follows: 
The finite-size quantities f ( L )  and [ , ( L )  are related to the eigenvalues AY’ of the 

f (  L )  = L-’ log AioJ 
[;’(L) =log [ A y J / A y ’ ]  (1 .10 )  

(1 .9)  
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where A0 and  A ,  are the leading and the ith eigenvalue. Thus, the central charge and  
the scaling dimensions can be estimated from the eigenvalues of the transfer matrix 
as functions of the system size L. Therefore we have constructed a transfer matrix for 
the loop model; this is explained in § 2. An analysis of the results is presented in § 3. 
That section also contains some conclusions about the universality classification of the 
five branches, as far as they are directly indicated by the numerical results. A further 
discussion of these results is given in § 4. 

2. Construction of the transfer matrix 

Guided by reasons of computational convenience, we start from the loop representation 
of the O ( n )  model, The vertex representation offers an  alternative starting point for 
the construction of a transfer matrix, but at the expense of the introduction of complex 
weights. 

We consider a loop model on a square L x M lattice Th, with periodic boundaries 
in the direction with system size L: the sites of the lattice are divided in M circular 
rows. There are free boundaries in the other direction, so that there are L 'dangling 
edges' which are connected to the vertices on row 1, and  the same for row M. The 
partition function (see (1.2)) is 

z ' M ) =  C U " ' u u ? r t w N > n d ' ,  (2.1) 
9, 

where M has been appended to indicate the number of rows. N u ,  N ,  and N ,  are the 
number of vertices of gM with weights U, U and w respectively, and N,  is the number 
of closed polygons on gM.  In order to avoid confusion, we shall consistently refer to 
line segments connecting the vertices of ZM as 'edges', and  to edges covered by %M 

as 'bonds'. The allowed vertices are such that the bonds form polygons and chains. 
The latter may end only on the dangling edges of the vertices on row 1 or M (the 
presence of these dangling bonds corresponds with the presence of a magnetic field 
on the end rows in the spin representation of the O ( n )  model). Rows of vertical edges 
are numbered the same as the vertices immediately below them; thus, the rows of 
dangling edges are numbered 0 and M. The way in which some (or none) of the 
dangling edges of row M are covered by % M ,  and the way in which some (or none) 
of these dangling bonds are pairwise connected, is called 'connectivity' (see figure 2). 
Essential ingredients of the transfer matrix of the loop model are the evaluation of 
the number CL of allowed connectivities on the L edges of row M (in particular for 
an  invariant subset of these connectivities), and  a mapping between these connectivities 
and the integers 1,2,  . . . , C,. This bears some resemblance to the analogous problem 
in the cases of the Potts model [19,20] and  the cubic model [21]. The problem is 
worked out in the appendix for the loop model. 

The natural numbers which label the allowed connectivities are denoted by Greek 
letters. Since the graph gW determines the connectivity on the L dangling edges of 
row M, we can write this connectivity, p, as a function cp of %,,,: 

P = cp(%f) .  (2.2) 
The partition function Z'" '  is now divided into CL restricted sums, Zk'), defined as 
fol Io ws : 

(2.3) z:" ' = C a,,, *,, ,U N a , ~  't w N,, n 
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Figure 2. The graph Y,w on an L x M lattice. The periodic boundaries in the L direction 
are indicated by broken lines. The connectivity ( ~ ( 9 ~ )  on row M is shown above: the 
points 1 and 3 are pairwise connected, point 4 is connected to one of the dangling bonds 
on row 1, and points 2 and 5 are unoccupied. The 'points' mentioned here are located in 
the middle of the vertical edges of row M ,  and are not to be confused with the vertices of 
the square lattice. 

Thus Zk'' collects all terms in Z'' '  which have connectivity p on row M, and 

Z ' M ' = C  z p .  (2.4) 
P 

The next step is to consider the analogously restricted sum for a lattice 2',,+1 consisting 
of M + 1 rows. The graph %M+l is decomposed in the graph %M on Y M ,  and a graph 
g M + ,  on row M + 1 ,  such that gM+l  fits the dangling edges covered by g M  on the 
M-row lattice. The total numbers of vertices with weights U, U and w are denoted N : ,  
NI  and NL respectively. Furthermore, we define N ;  as the number of closed loops 
on Writing 

N :  = N,+n,  N :  = N,  + n, N :  = N ,  + n ,  N ;  = NI + nI (2.5) 
it is obvious that nu ,  n,, and n,, are the numbers of vertices of gk,+l of the types U, v 
and w' respectively, and that nI is the number of loops closed by appending gu+l  to 
Y?M. Thus 

zY+l)= c a,,, 4,+,IU 
$,*I 

uhkwy n h ,  

where the last sum is over those graphs g ,u f ,  that fit ?!IM. However, in order to determine 
which subgraphs g,u+l occur in this sum, not all information contained in %,,, is 
required. It is enough to know which of the edges of row M are covered by %M, and 
this information is contained in (~(3~). Likewise, in order to determine the second 
argument of the Kronecker delta, namely the connectivity cp( % M + l )  on the dangling 
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edges, not all of 'S?M+l need be known. It is enough to know the connectivity cp(  gM 
on row M and the subgraph B,,,,+~, as illustrated in figure 3. Thus 

q ( % M + 1 )  = (L(p, BM+1) (2.7 
when p = cp( gM). Substituting this in (2.6) gives 

~bf"+"=c ~ ~ ~ ( ~ ~ ) ~ ~ l ( v ~ ~ w ~ u n ~ i  s ~ ~ ( ~ , ~ ~ + ~ ) u  " u v " u ~ " ~ ~  n"1. (2.8) 

Since the third sum depends only on a and p (and not on other information contained 
in GM) we can define the transfer matrix T by 

P Vh( B M + I I P  

(2.10) 

(2.11) 
As in the case of the Potts model [20], memory and computer time requirements for 
a ,  calculation involving the transfer matrix of a system with size L can be strongly 
reduced by the factorisation of T into L sparse matrices: 

TzTL.TL-1 ' .  . . .TI (2.12) 
where the Ti can be thought of as adding vertex i of a new row. A complication arises 
when the first vertex of a new row is added, because the number of dangling edges 
increases by two (see figure 4a, b). When more vertices are added, the number of 
dangling edges does not change, until TL is applied and the number decreases by two. 
Thus, T, is a C,,, x CL matrix, T2, . . . , TL-1 are C,,, x CL+, matrices and TL is a 
C L x  CL+, matrix. The increase in the size of the matrices is outweighed by the fact 
that they are sparse-they contain only a few non-zero elements in each column. Their 
positions and values can be stored as one-dimensional arrays. A further memory 
reduction is possible because the Ti (1 < i < L )  are closely related. Let a permutation 
on the connectivities, obtained by cyclically renumbering the dangling edges i + i - 1, 
be expressed in the matrix P. Then 

(2.13) T, = p2-i.  T2 . pi-, 

and 
T=TL * P2 * (P * T2)L-2 * TI. 

Thus, only three sparse matrices need be stored, namely TL - P2, P .T2 and TI. 
(2.14) 

Figure 3. The connectivity ( ~ ( 3 ~ ~ ~ )  on row M + 1  (shown above) is determined by the 
graph g M + I  on row M +  1 and the connectivity ( ~ ( 9 ~ ) ;  other details of gM are irrelevant. 
Furthermore, the change in the reduced energy due to the addition of gM+, is also 
determined by cp(  Y M )  and g M + l .  In this example, n, = 2, nu = 1, n, = 2 and n, = 1 (see text). 
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4 
L.2. 1 * 3  

Figure 4. Topmost row of a finite O(n) model of width L. The circles shown are sites of 
the spins for the spin representation of the O(n) model. Bulk sites are shown as open 
circles, surface sites (i.e. dangling edges) as full circles. The transfer matrix T, which adds 
a new row to the lattice, can be decomposed into L sparse matrices T,, T,, . . . , T,, each 
of which adds one new vertex to the topmost row. ( a )  The situation after completion of 
a row. There are L dangling edges. ( b )  The situation after the addition of the first vertex 
of the new row, which is effectuated by T, .  The number of dangling edges has now 
increased by two. ( c )  The situation after the addition of the second vertex of the new row, 
which corresponds with the action of T,. This operation leaves the number of dangling 
edges unchanged. The sparse matrices T,, . . . , T,-, are closely related to T2 (see text). 
Finally, the last sparse matrix T, completes the next row so that we return to the situation 
shown in ( a ) ,  with L dangling edges. 

Expansion of 2"' in (2.11) in eigenvectors of T shows that, in general, the free 
energy per vertex in the limit M + cc 

(2.15) 

is determined by the largest eigenvalue .I\') of T according to (1.9). 
For actual computations it is useful to sort the connectivities by parity in 'odd' and 

'even' sectors, according to the number nd of bonds on the topmost row connected to 
the dangling bonds of row 0. Since this number can only decrease by multiples of 2 
under the application of T, the parity of the connectivities is conserved. Within the 
odd and even subspaces, one can introduce a further classification by ordering the 
connectivities according to the value of n d .  Since f ld can never increase, the transfer 
matrix T assumes an upper triangular shape in terms of the blocks generated by the 
groups of connectivities. Furthermore, on the basis of entropy considerations, we 
expect the largest eigenvalue of even sector to occur in the block with nd = 0, and that 
of the odd sector in the block with f ld = 1. 
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At this point, it is useful to interpret this division of the loop model transfer matrix 
into blocks in terms of the O ( n )  spin model. If there is no field on row 0, the transfer 
matrix reduces to the nd = 0 block. This shows that the free energy of the spin model 
with free boundaries is expressed by the leading eigenvalue of T (equation (1.9)) in 
the even sector, i.e. the nd = 0 block. The diagram expansion of the O ( n )  model can 
also be used to transform spin-spin correlations into the loop-model language. Such 
correlations can be expressed in the weights of those loop diagrams in which the spins 
to be correlated are connected by Ylw. The information carried by the n d = O  con- 
nectivities includes the spin-spin correlations within a row. Energy-energy correlations 
between different rows (i.e. four-spin correlations) are also contained in the n d = O  

block of T. On the other hand, the diagrams in the loop model which express the 
two-spin correlations between different rows are precisely those generated by the 
connectivities in the nd = 1 block. 

Details of the enumeration of the connectivities in the blocks of T with nd = 0 and  
nd = 1 are given in the appendix. In general, the invariant blocks of the transfer matrix 
are non-symmetric so that the usual methods to find the leading eigenvalues d o  not 
work. Thus we have applied the hybrid direct iteration-Hessenberg method described 
in [20]. 

By means of these techniques, we have numerically calculated the largest and 
second largest eigenvalues of T in the nd = 0 block. Unless stated otherwise, we have 
restricted ourselves to translationally invariant eigenstates, i.e. the eigenvectors are 
invariant under multiplication by P. The range of the system size L was between 2 
and  14. For the latter system size, the nd = 0 block of T has a size of about lo5 x lo5 
(see appendix). The leading eigenvalue in the nd = 1 block was obtained for L S  12. 
These calculations were performed on the Convex-C 1 minisupercomputer of Delft 
University. 

3. Numerical results 

Using the eigenvalues of the loop model transfer matrix, computed with methods 
explained in 0 2 and the appendix for different system sizes, one can calculate the 
central charge and a few scaling dimensions as follows. 

(1) The central charge. According to the theory of conformal invariance, the 
asymptotic finite-size scaling behaviour of the free energy f( L )  per site of an L x CD 

system is given by ( l S ) ,  so that the central charge c can be estimated, using (1.9) and 
the eigenvalues Ai”. 

(2) The temperature exponent. The theory of conformal invariance predicts that 
the inverse correlation length has the asymptotic finite-size dependence given by (1.6). 
Thus, using the two leading eigenvalues of T in the nd = 0 block, which determine the 
energy-energy correlation length according to ( 1. lo), the temperature exponent X T  
can be obtained. 

(3)  The magnetic exponent. Similarly, the magnetic exponent X H  corresponding 
to the spin-spin, correlation function can be derived from the largest eigenvalue of T 
in the nd = 0 sector and that in the nd = 1 sector. 

(4) Interface exponent 1. When the couplings, in this case in the corner-cubic 
interpretation, are antiferromagnetic, this will be manifested by an  alternation of the 
leading eigenvalue as a function of L. The amplitude of the alternation can be 
interpreted as an  ‘interface energy’. This quantity can be analysed just as a correlation 



The O ( n )  model on the square lattice 1423 

length (in the Ising model, the interface energy and the inverse correlation length are 
related to each other by duality): 

(3.1) 
(5) Interface exponent 2. So far we have chosen U 3 0. For even system sizes, the 

free energy does not depend on the sign of U. However, in general it does for odd L. 
Thus, a second interface exponent can be obtained on the basis of (3.1) using v < O  
for the odd system sizes, when the O( n )  representation of the model is antiferromag- 
netic. 

(;:,I( L )  = $log( ApJl+ AyLl) - log AY' L odd. 

3.1. The extrapolation procedure 

On the basis of (1.5) one can define finite-size estimates fw (1, N )  and c (1, N )  of the 
bulk free energy and the central charge respectively by requiring 

for L = N and L = N + 1 (or L = N and L = N + 2 if f( L )  alternates as a function of 
L, in which case only even system sizes are used) so that both unknowns can be solved. 
For models at criticality, one may, in general, expect corrections to the leading finite-size 
dependence of the free energy proportional to larger negative powers of L. Therefore, 
c(1, N )  is expected to decay algebraically to c: 

c(1, N )  = c +  UN-'+. . . . . (3.3) 

c(1, L ) =  c(2, N)+a(N)L- '" '  (3.4) 

Thus, a new series of estimates c(2, N )  can be obtained by solving 

for L = N, N +  1 and N + 2  (if alternation as a function of L is absent). This new 
series of estimates is shorter, but it is expected to converge faster. They are called 
iterated fits. This process can be further iterated, yielding c(3, N )  etc. However, the 
series of estimates rapidly becomes too short to judge its apparent convergence, 
especially when f( L )  alternates as a function of L so that only the f( L )  data for even 
L are used as input for the fitting procedure. Moreover, numerical uncertainties in 
f( L )  due to rounding errors are strongly enhanced by this process of iteration, so that 
the best estimates were chosen as c ( 2 ,  N )  or c(3, N )  for the largest available N. 

Similar methods can be applied for the determination of the scaling dimensions. 
On the basis of (1.6) and (1.10) we define estimates Xi( l ,  L )  of XI by 

These estimates can be extrapolated by requiring 

~ ~ ( 1 ,  L )  = ~ , ( 2 ,  N ) +  a(N)L-' '"  (3.6) 
for L = N, N + 1 and N +2  and solving for the unknowns. Alternatively, one may 
insert a fixed value b ( N )  = 2, so that two subsequent values of L suffice to find the 
iterated estimate Xi(2, N ) .  This is appropriate when Ising-like corrections to scaling 
dominate, but the results should converge also in other cases. Finally, the procedure 
can be further iterated, yielding Xi(3, N ) .  The process of iteration was ended on this 
point in most cases because of the reasons mentioned under the analysis of f(L). 
Results of these fitting procedures are shown in the following subsections. 
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3.2. Numerical results f o r  the central charge 

Best estimates of the central charge, obtained by fitting procedures described in 0 3.1, 
are given in table 1 for several values of n between -2 and +2 on each of the five 
branches defined in 0 1. Estimated uncertainties in the last decimal places are shown 
between parentheses. Missing entries at n = -2 indicate that the finite-size data for 
the largest eigenvalue of T did not seem to correspond with the analytic continuation 
(as a function of n )  of the rest of the branch. The data for branch 0, n = -2 and 
n = -1 .5  d o  not correspond to the largest eigenvalue of T, but instead to the analytic 
continuation of the largest eigenvalue for n > - 1; this level becomes the second largest 
eigenvalue for n < - 1 .  In particular the results in table 1 on branches 1 and 2 are 
accurately determined, except for branch 1 ,  n = -2  where the finite-size convergence 
is anomalously slow. They agree precisely with the central charge that was analytically 
derived for the critical and low-temperature branches of the O ( n )  model on the 
honeycomb lattice [6,7], with the conjecture of Dotsenko and Fateev [ 121 and with 
that obtained by a mapping [ 131 of the O( n )  model on the Gaussian model. Further- 
more, the numerical results for branch 1 agree with those for the critical two-dimensional 
cubic model [13]. Thus, the conformal anomaly on branches 1 and 2 is accurately 
given by 

C =  1 -6(g - l )* /g  cos .rrg = - n / 2  o s g s 2  (3 .7)  

where g = 28/1r  (cf ( 1 . 4 ) )  is the renormalised coupling constant. 
Branch 1 corresponds with g 3 1 ,  branch 2 with g < 1. The point at n = -2 ,  branch 

1 does not fit this expression very well. This is probably due to logarithmic corrections 
such as are present in the corresponding 0 ( - 2 )  model on the honeycomb lattice [6]. 

Table 1. Conformal anomaly of the square O ( n )  model for several values of n of the 
branches 0-4 as defined in 9 1. These values were obtained by fitting a power law to the 
finite-size results for the free energy as described in the text. Estimated numerical uncertaint- 
ies in the last decimal places are given between parentheses. In the case of branch 3, these 
inaccuracies are difficult to estimate (see text). 

n 

-2 
-1.5 
-1 
-0.5 
-0.25 

0 
0.25 
0.5 
1 
1.5 
2 

Branch 0 

-7.001 (4) 
-3.818 (2) 
-2.00 (1) 
-0.820 (1) 
-0.375 (1) 

0 
0.318 (1) 
0.588 (1) 
1.003 (2) 
1.27 (2) 
1.40 (5) 

Branch 1 

-1.88 (2) 
-1.0096(1) 
-0.600 000 (1 ) 
-0.279 015 (5) 
-0.135 732 (5) 

0 
0.130 070 (2) 
0.255 950 (2) 
0.500 000 ( 1 )  
0.741 840 ( 5 )  
1.000 00 (1) 

Branch 2 Branch 3 Branch 4 

-14.4 (1) 
-7.000 (5) 
-3.8183 ( 3 )  
-2.8011 (2) 

-1.35263 ( 5 )  
-0.819 73 (2) 

-2.0000 (1) 

0 
0.587 57 (1) 
1.00001 (2) 

-0.818 (3) 
-0.600 000 (1) 
-0.34 (2) 
-0.20 (1) 

0 
0.270 (5) 
0.558 (1) 
1.003 (2) 
1.270 (5) 
1.5000 (2)  

-14.3 (2) 
-6.52 (2) 
-3.31 (1) 
-2.299 (2) 
-1.5000 ( 5 )  
-0.853 (2) 
-0.320 ( 1 )  

0.500 000 ( 1 )  
1.088 (1) 
1.5000 (2) 

These data show that branches 1 and 2 belong to the sets of O ( n )  universality 
classes as introduced by Nienhuis [3] for the honeycomb O ( n )  model. 

The central charges on the other branches are less accurately determined numeri- 
cally, but the data still strongly suggest two remarkable relations. In the first place, 
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the central charge of the O ( n )  model on branch 0 is, within numerical uncertainties 
of the order of equal to that of the O( n + 1) model on branch 2. We shall come 
back on this point in the discussion (§  4). The entries at n = 1.5  and n = 2 for branch 
0 in table 1 are exceptional in the sense that the fitting procedure did not clearly 
indicate finite-size convergence. Therefore, the numerical uncertainties shown between 
parentheses are rather uncertain themselves. In such cases, the number between 
parentheses is chosen to be, lacking a better criterion, to be ten times the difference 
between the last (i.e. those using the highest L values) two finite-size estimates. Under 
these circumstances, we consider the results for n = 1.5 and  n = 2 on branch 0 consistent 
with non-algebraic finite-size dependence as expected in the absence of a second-order 
transition. Slow crossover phenomena, such as present in the q-state Potts model with 
q somewhat greater than four [ 19,201, could mask the exponential finite-size conver- 
gence which is expected in the limit of large L. 

Secondly, the estimates of the central charge for branch 4 suggest that the exact 
values are equal to those on branch 2 (for the same n )  plus one half. This suggests 
the interpretation of branch 4 as a low-temperature O(n) phase with an additional 
Ising-like degree of freedom. This relation between branches 2 and 4 suggests that 
their continuations, i.e. branches 1 and 3 respectively, are similarly related. While this 
may be the case for n 3 1 ,  it is not so for n S 0.5. Our data indicate that slow crossover 
to a different type of behaviour occurs for n < 1 .  Convergence on that part of branch 
3 appears to be good for n = 0 (no finite-size dependence o f f ( L )  for L even) and for 
n = - 1  (this point appears to be closely related to the corresponding point of branch 
1 ) .  For other values n < 1 ,  the apparent convergence is poor. This implies not only 
that the error margins of the c values are relatively wide, but, as remarked above, also 
that the uncertainties themselves are difficult to assess. 

3.3. The temperature exponent 

Finite-size data for the energy-energy-like correlation length were used as input for 
the fitting procedure described in § 3.1. The results in terms of the temperature exponent 
X T  are shown in table 2. 

The results for branch 0 can be identified with the exponent 2A(m, m )  as predicted 
by (1.7) and  the Kac formula, equation (1.8).  On this branch, level crossing occurs at  
n = - 1 ,  so that X T  changes sign. At n = - 1 ,  a second temperature dimension could 
be evaluated: X , ,  = 0.750( 1 ) .  

The data for branch 1 ,  and branch 2 for n 3 1.5, agree accurately with the temperature 
exponent X T  as conjectured by Cardy and Hamber [ 1 1 3 ,  and derived by Nienhuis [3] 
for the honeycomb O( n )  model. There is also good agreement with numerical results 
for the temperature exponent of that model [6] and  of the n-component cubic model 
[21]. This exponent is identified as 26(  1 , 3 )  in the conformal block predicted by the 
Kac formula. 

1, the analytic continuation of the eigenvalues associated with 
X T  becomes dominated by other eigenvalues, at least for the range of finite-sizes that 
are accessible. Therefore, we have no X ,  results on this branch for n s 1 .  

Again, the results for branch 3 exhibit strong crossover phenomena, so that we 
cannot rely on the convergence of the estim.ates, except rur n = 2 and - 1 .  The latter 
entry confirms the relation with the corresponding point on branch 1. 

Finally, on branch 4 we find another confirmation of Ising-like degrees of freedom: 
X ,  = 1, independent of n. 

For branch 2, n 
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Table 2. Temperature critical dimension X ,  of the O ( n )  model for several values of n on 
branches 0-4 as defined in 8 1. These values were obtained from the finite-size results for 
the two largest eigenvalues in the nd = 0 sector of the transfer matrix (see 5 2). Estimated 
uncertainties in the last decimal places are given between parentheses. For a number of 
points on branches 0 and 3, these uncertainties were difficult to estimate (see text). Data 
are missing for most of branch 2 beacuse of level crossing: the second largest eigenvalue 
does no longer correspond to the critical dimension X, .  

n 

-2 
-1.5 
-1 
-0.5 
-0.25 

0 
0.25 
0.5 
1 .o 
1.5 
2.0 

Branch 0 

-0.5000 (3) 
-0.191 70 (1) 

0 
0.138 570 ( 5 )  
0.19660(1) 
0.250 00 (1) 
0.300 60 (1) 
0.350 65 ( 2 )  
0.48 (1) 
0.7 (2) 
0.9 ( 3 )  

Branch 1 

0.033 (3 j 
0.2599 (3) 
0.400 00 ( 1  ) 
0.53098 (2) 
0.597 61 (3) 
0.666 68 (3) 
0.739 51 (3) 
0.817 76 (1) 
1.000000(1) 
1.251 890(1) 
2.000 000 (2) 

Branch 2 Branch 3 Branch 4 

0.6101 ( 5 )  
0.400 00 ( 1 ) 
0.2163 (2) 
0.165 (5) 
0.155 (5) 
0.17 (1) 
0.23 (1) 
0.48 (1) 

3.1951 (1) 1.1 (2) 
2.000 000 (2) 1.0000 (2) 

l.OOO(1) 
l.OOO(1) 
1.0001 (2) 

1.000 00 (1) 
1.00000(1) 
1.00000 (1) 
1.000 000 ( 1 ) 
1.000 000 (3) 
1.0000 ( 2 )  

1.000 05 (5)  

3.4. The magnetic exponent 

A similar procedure was followed for the magnetic correlation length. Results of the 
fitting procedure are shown in table 3. On branches 1 and 2, they agree with the 
prediction by Nienhuis [3] for the magnetic exponent of the honeycomb O( n )  model, 
and with the exact results of Batchelor and Blote [6]. This exponent is identified with 
the exponent 2A(( m + 1)/2, ( m  + 1)/2) in the theory of conformal invariance, where 
m parametrises the central charge according to (1.7). The results for branch 4 are, 
within numerical uncertainties, equal to the corresponding values on branch 2 plus 
the Ising value X ,  = 0.125, again in agreement with the hypothesis that both Ising and 
O ( n )  degrees of freedom play a role in the physics of this branch. The entries for 
n S 0 on branch 4 in table 3 are based on eigenvalues which, for even L and nd  = 1 ,  

Table 3. Magnetic critical dimension X, of the O ( n )  model for several values of n on 
branches 0-4 as defined in Fi 1.  These results were obtained from the ratio of the largest 
eigenvalues of the transfer matrix in the nd = 0 and nd = 1 sectors (see 5 2). Estimated 
uncertainties in the last decimal places are given between parentheses. 

n Branch 0 Branch 1 Branch 2 Branch 3 Branch 4 

-2 
-1.5 
-1 
-0.5 
-0.25 

0 
0.25 
0.5 
1 .o 
1.5 
2.0 

-0.500 (1) 
-0.191 70 ( 5 )  

0 
0.138 57 (1) 
0.196 60 ( 1 ) 
0.2500 (1  j 
0.3006 ( 1  ) 
0.3505 ( 1 ) 
0.48 ( 1 )  
0.7 (1) 
0.9 (3 1 

0 
0.05375 ( 2 )  
0.0750 (2) 
0.090 96 ( 1 )  
0.097 843 (1) 
0.104 167 ( 2 )  
0.1 10 020 ( 1 )  
0 11  5 442 (1  ) 
0.125 000 ( 1 )  
0.132 224 (1) 
0.125 000 ( 1 )  

-1.253 15) -0.17 (1)  
-0.6250 ( 5 )  -0.12 (3) 
-0.349 05 ( 5 )  -0.10 (5)  
-0.259 24 ( 1 )  -0.08 (51 
-0.187 500 ( 1 )  
-0.128 569 ( 1 )  0.1 (1) 
-0.079091 ( 1 )  0.15 (5)  

-0.0 ( 1  

0 0.48 ( 1  ) 
0.061 874 (1 1 0.30 (2) 
0.125 000 ( 1 )  0.250 (1) 

-1.16 (1)  
-0.500 (5) 
-0.223 ( 1 )  
-0.1342 ( 2 )  
-0.062 50 (2) 
-0.003 56 ( 1 )  

0.045 89 ( 1 )  
0.125 000 (1) 
0.186 87 (1) 
0.250 (1) 
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correspond with antisymmetric eigenvectors: they change sign under an  elementary 
translation in the finite direction. For n 2 0 . 2 5 ,  the leading eigenvectors are symmetric. 
The difference is a consequence of the choice U 2 0 in (1.4). Since w changes sign 
between n = 0 and n = 0.25, so does the * sign in the definition of U. 

A comparison with table 2 shows that the results for X T  and X H  are the same on 
branch 0. We explain this equality in § 4. 

Again, the results on branch 3, and in particular their error margins, are poorly 
determined. 

3.5. The interface exponents 

We have also analysed the 'interface energy' which is interpreted here as the amplitude 
of the alternation of the free energy per row between even and  odd values of L. This 
quantity can be analysed just as an  inverse correlation length. Results of the fitting 
procedure are given in table 4 for branches 0 , 3  and 4. Alternation is absent on branches 
1 and 2. Note the discontinuity in the results for branch 4. This is a consequence of 
the choice U 3 0 in (1.4), and the fact that for odd L, the largest eigenvalue depends 
on the sign of U (see also the remark in § 3.4). For n > 0, we observe the Ising magnetic 
exponent f .  

Table 4. Critical dimension X , , , , ,  corresponding with the vanishing of an 'interface' at a 
critical point. Such an interface may be created by e.g. antiperiodic boundary conditions 
or, as in the present case, if the O(n) spin-spin interactions are antiferromagnetic and the 
system size L is odd. Then, alternation as a fuction of system size occurs in the free energy, 
from which the interface exponent can be calculated (see text). Such alternation is absent 
on branches 1 and 2, and on branch 3 for n 0. The discontinuity of the result on branch 
4 is attributed to a change of sign of w between n = 0 and n = 0.25. Since U was chosen 
2 0  in (1.41, branch 4 splits into two parts which are not each others analytic continuation. 
The part with n S 0 did not yield satisfactory finite-size convergence. 

n Branch 0 Branch 3 Branch 4 

-2 
-1.5 
-1 
-0.5 
-0.25 

0 
0.25 
0.5 
1 
1.5 
2 

-0.6250 ( 3 )  
-0.349 04 (1  ) 
-0.1875 ( 1 )  
-0.079 09 1 ( 1 1 
-0.036 781 ( 2 )  

0 
0.032 512 ( 1 )  
0.061 87 (1 )  
0.121 ( 4 )  
0.18 ( 2 )  
0.28 ( 8 )  

-0.0002 (5 )  
0.00000 ( 2 )  
0.000 ( 1)  
0.000 ( I )  
0 
0.004 ( 4 )  
0.02 (1 )  
0.121 ( 4 )  
0.126 ( 2 )  
0.125 000 ( 2 )  

>1.5 
> 2  
> 2  
> 2  
-2 

0.12500 ( 1 )  
0.125000 ( 1 )  
0.125 000 ( 1 )  
0.125 000 ( I !  
0.125 000 ( 2 )  

A different exponent can be obtained by an  analysis of the interface energy by 
choosing U < 0 in (1.4). These results are shown in table 5 .  For branches 1 and 2 ,  they 
can be identified as the conformal exponent 2A( 1 ,2) .  Note that, on branch 4, the Ising 
magnetic value now appears for n s 0. It is remarkable that the apparent convergence 
for branch 3 is quite reasonable, in contrast with other results presented above for 
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Table 5. Critical dimension X,,,,z corresponding with the vanishing of an interface at 
criticality for t' < 0 (see (1.4)). Such an interface can be due to antiferromagnetic interactions 
in the equivalent spin representation of the O ( n )  model if the system size L is odd. Then, 
alternation of the free energy per site as a function of L occurs, from which Xlnr,Z can be 
estimated. Such alternation can, in the loop model picture, be attributed to the fact that 
the energetically most favourable loop configurations discriminate between odd and even 
L. While a change of sign of c does not change the bulk free energy (nor the free energy 
for L even), it does influence the results for L odd and thereby the amplitude of the 
alternation. The entries for branch 4 with n 0 are to be compared with those for n > 0 
in table 4: the underlying finite-size data are each others analytic continuation in n. 

n Branch 1 Branch 2 Branch 3 Branch 4 

'2 
-1.5 
-1 
-0.5 
-0.25 

0 
0.25 
0.5 
1 
1.5 
2 

-0.245 (5 )  
-0.152 50 (2)  
-0.10003 (2)  
-0.050 892 (1)  
-0.025 906 ( 1 )  

0 
0.027 322 (1)  
0.056 659 (1)  
0.125 000 (1)  
0.219 459 ( 1 )  
0.500 001 (2)  

10 (10) 
3 (1 )  
2.55 (5 )  
2.27 ( 3 )  
1.999 (2 )  
1.778 (1)  
1.5842 (5 )  
1.2500(1) 
0.948 19 (5  1 
0.500 001 (2 )  

-0.1525 (5 )  
-0.100000 (1 )  
-0.0505 (10) 
-0.025 (1  j 

0 
0.032 (2 )  
0.0667 (1 )  

0 .24(1)  
0.630 (5 )  

0.121 (4)  

0.10 (3 )  
0.127 (5) 
0.1250 ( 5 )  
0.1250(1) 
0.125 00 (51 
1.90(1)  
1.710 ( 5 )  
1.375 ( 1 )  
1.0732 ( 1 )  
0.630 (5 )  

branch 3. There is a striking similarity with branch 1 in this table, at least for n S 0. 
Table 5 does not contain data for branch 0, because U = O  in this case. 

4. Discussion 

There are two major clues to the universality class of the critical points we have 
analysed. The first is value of the conformal anomaly c, which gives clear evidence 
that the five critical points for each value of n,  are generally in distinct classes. Most 
of the critical behaviour we find can be related to that of the unitary series [9] of which 
the central charge and the values of the critical exponents are given by (1.8). The 
second clue is the location in the space of coupling constants U, U and w-, which in 
some cases gives an  indication of the type of critical behavior to be expected there. 
In the following discussion we will use the points at n = 0 as the guiding example 
because they are in the middle of the branches -2 < n < 2. Also the case n = 1 will be 
used for guidance especially where exact results are available. 

4.1.  Branches 1 and 2 

On branch 1, as indicated in the previous section, the results for the conformal anomaly 
and the critical exponents are in excellent agreement with those of the ordinary O( n )  
critical points. Figure 5 shows the numerical values of c plotted against n, together 
with the analytically known results (equation (3.7)), with 1 < g < 2 and m = l / (g  - 1). 
The agreement is found over the full range of n, also in the exponents X T ,  X H  and 
Xi",,*,  which are identified as 2A( 1 ,3) ,  2A((m + 1) /2 ,  ( m  + 1) /2)  and  2A( 1,2)  respec- 
tively. 
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Figure 5. Conformal anomaly for the five branches of the O ( n )  model defined in 8 1. The 
data  points, namely 3: branch 0; T :  branch 1;  0: branch 2 ;  A: branch 3; Z: branch 4, 
are  the results of our  numerical analysis described in 8 3 .  The full curves are the known 
analytic results for branches 1 and  2 of the honeycomb O( n 1 model,  the same results, but 
displaced by +0.5 in the c direction and  the result for branch 2, displaced by -1 in the n 
direction. The identification of the numerical results is quite clear except in  the case of 
branch 3, where finite-size convergence was rather poor.  

For n = 0 the model describes the scaling limit of long polymers in dilute solution. 
The critical point can be viewed as the transition where the chemical potential of the 
monomers balances with the configurational entropy. When the excluded volume 
interaction is ignored this transition would take place at 2 u  + U = 1, which is indeed 
not far from the n = 0 critical point on branch 1: (U, U, M*) = (0.4,0.3,0.1) from (1.4). 
Furthermore since M' < U:, there is no attractive force between spatially adjacent 
monomers, and we conclude that this point describes the ordinary self-avoiding walk 
(SAW) .  In the Ising case n = 1, the critical point on branch 1 turns  out to satisfy the 
free fermion condition 2 w  = 2u ' -  U:, and is therefore exactly soluble [22 and references 
therein], both at criticality and away from it. 

As in the honeycomb O( n J model, the critical point on branch 1 can be analytically 
continued through n = 2 into branch 2, which is considered, from the large values of 
the coupling constants, to govern the low-temperature behaviour of the model. Also 
on this second branch, our results for the magnetic exponent are in excellent agreement 
with the analytical predictions from 2 A ( (  m + 1 J/2, ( m  + 1 J /2)  of (1.8) and (3.7), now 
with 0 < g < 1 and m = g / (  1 - g ) .  The thermal exponent was determined for n 3 1.5 



1430 H W J Blote and B Nienhuis 

only because of its large value, which makes it susceptible to masking by other 
eigenvalues. 

4.2. Branches 3 and 4 

On branch 4 we observed that the data for the central charge are accurately given by 
those on branch 2, increased by 4. This suggests that the model can be described as 
a superposition of an  Ising model and an  O ( n )  model. There appears to be a similar 
situation in the SOS model which was investigated recently by den Nijs and  Rommelse 
[23,24]. When the coupling between the two simultaneously critical systems is 
irrelevant, the central charge is simply the sum of those of the component models. A 
similar behavior is seen in frustrated X Y  models [25,26 and references therein], for 
the description of arrays of Josephson junctions [27], which have a central charge 1. 
In fact, the limit n = 2 of branch 4 may well be the description of precisely that system. 
The thermal exponent has the Ising value 1 over the full range of n, while the magnetic 
exponent turns out to be the sum of the O ( n )  exponent of branch 2 and the Ising 
value $. 

The role of the class of critical points of branch 4 in the phase diagram is not so 
obvious as for the first two branches. We observe that the Ising case again satisfies 
the free fermion condition and  corresponds, in the corner-cubic representation, to an 
antiferromagnetic critical point. In the language of the loop gas this is a transition 
between a random packing of polygons and a dense packing. Thus for polymers it is 
a transition between a dense solution and a melt. Since a dense packing of polygons 
is lattice dependent, the same may be expected of the nature and existence of this 
transition. 

The value of the central charge on branch 3 could not be determined as accurately 
as on the other branches. It is, however, clear that the analytic continuation of the 
value on branch 4 does not fit the data, except possibly for n a 1. The location of 
these points in the phase diagram (e.g. at n = 0, ( U ,  U, w) = (0.4,0.1,0.5)) suggests that 
they may be tricritical points. This can be seen by the following reasoning. In an 
intersection of the phase diagram with U = U (figure 6) ,  an ordinary critical point is 
expected on the U axis. On the w axis there must be a first-order transition between 
a completely empty lattice and  one fully packed with polygons. Somewhere in between 
these two extremes the simplest scenario requires a tricritical point where the transition 
changes form second to first order. Therefore, in the limit n = 0, we have here a 
candidate for the theta transition of polymer solutions. For the Ising case n = 1 (see 
below) the point on branch 3 is tetracritical and has two critical lines emerging from 
it. This scenario, indicated by the broken curve in figure 6, may also be valid for n = 0. 
In this respect it should be noted that the thermal exponent X T  = 0.15, even with the 
fairly large error bar of 0.01, seems to disagree with the value t proposed by Duplantier 
and  Saleur [28]. 

A different interpretation is suggested by the numerical evidence noted in § 3.5 for 
a relation between branches 1 and 3 for n C 0, which indicates that the point n = 0 on 
branch 3 may be an  ordinary SAW point. Such a relationship is in line with a link 
between branches 2 and  4 (i.e. the analytic continuations of branches 1 and 3) noted 
above. Our results may indicate that, for n smaller than some special value, crossover 
takes place to ordinary critical O ( n )  behaviour. If this is true, the question remains 
why the relation between branches 1 and 3 does not show up in the analysis of the 
central charge, and for the other exponents. We have at present no  good explanation 
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Figure 6. The role of the critical points of branches 1-4 in the qualitative phase diagram, 
shown here as an intersection through the w axis, e.g. the plane U = U or U = 0 for II = 0. 
Unless U = 0, the precise ratio of U and U is not expected to affect the qualitative picture. 
A first-order transition cuts the w axis, and a continuous transition takes place on the 
horizontal axis. Supposedly these two points are connected by a transition line which 
changes from first to second order in a multicritical point (3). Another continuous transition 
line (4) may emerge from this point. The numbers of this figure show a qualitative location 
of the branches 1-4. 

why slowly converging crossover effects should (approximately) cancel only in the 
analysis of the exponent Xint,>. Especially at n = -1, the numerical evidence relating 
branches 1 and  3 is strong. For small system sizes, we have evaluated the whole 
eigenspectrum and observed that most, but not all, of the eigenvalues match precisely. 
Comparison of the vertex weights shows that U and U are identical, but that w is 
different for branches 1 and 3 (for n = -1). In order to understand the exact equivalence 
of the two 0 ( - 1 )  models, consider a loop model configuration in the nd = 0 sector, in 
which two loop segments collide in a vertex of type w. A configuration with opposite 
weight is obtained by rotating the w-type vertex, because the number of loops changes 
by one. Since the sum of the contributions to the partition function cancels, vertices 
of type w are, in effect, forbidden. This equivalence applies also to the n = -1 points 
on branches 2 and 4. The paradox that the central charges are nevertheless different 
is due to the fact that they were, in all cases, determined from the largest eigenvalue 
of T . However, the corresponding eigenvector may be such that its contribution to 
the partition function of a system without dangling bonds vanishes. 

At n = 1 the critical point of the third branch simplifies by the fact that U vanishes 
and that the two vertex configurations with weight w need not be distinguished. Thus 
only six vertices remain which can be mapped onto F-model configurations by the 
following procedure. One divides the sites of the lattice into two interpenetrating 
sublattices A and B. The diagrams of the model are transformed by replacing occupied 
horizontal and  empty vertical edges by arrows from A to B and  occupied vertical and 
empty horizontal edges by arrows from B to A. Thus the model is turned into a n  F 
model precisely at its transition point. In the phase diagram this point does not play 
the role of a tricritical, but of a tetracritical point, where the Ising ferro- and antifer- 
romagnetic transitions merge into a single first-order transition [29,30]. It is not 
obvious whether this qualitative behaviour persists at other values of n. It should be 
noted that at n = 1 in any case this behaviour is not that of an  isolated point, but that 
the entire Baxter line [31], ( 2 u + u =  1, w =f) is tetracritical. The central charge and  
critical exponents are not the known tricritical values ( c  =A, X T  = and XH = &), but 
c = 1, X T  = $ and X H  = i, as corroborated by the numerical results. 
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When speculating about the possible generalisation of the qualitatibe shape of the 
Ising phase diagram to other values of n, i t  should be noted that at n = 1 the branches 
0 and 3 intersect, indicative of a crossover between two types of behaviour. Another 
complication is the existence of two marginal operators, namely those that span the 
Baxter line and the F model respectively. This may have a negative effect on the 
numerics both at this point and in the neighbourhood, and explain the relative 
inaccuracy of our results. 

4.3. Branch 0 

In  the separate branch 0 we find again a new set of universality classes. In $ 3,  we 
observed that the central charge of this family of critical points is equal to that in 
branch 2, apart from a displacement of n. In retrospect we could understand this fact 
as follows. In the limit U = v = 0 and w =E, all edges are occupied in the surviving 
diagram configurations. The partition sum, however, is non-trivial, because each vertex 
still carries a degree of freedom in the two ways that the four bonds can be connected. 
This affects the weight of each configuration through the number of polygons by which 
the lattice is covered. The system has been recognised [32] as the n’-state Potts model 
at its critical point. Here it is more appropriate to :riew it as an  O ( n )  model in its low 
temperature phase, that is in the same universality class as branch 2. The equivalence 
between these two models has been noted before [3,28]. The partition sum, up  to a 
constant power of U’, is simply the sum of n p  over all covering polygon configurations, 
with p the number of polygons. This is rewritten by setting n = n’+ 1 ,  and summing 
over all coloured polygon configurations, in which each polygon is either red with 
weight n’, or blue with weight 1 .  Summation over the colouring alone trivially recovers 
the original partition sum. Another useful partial summation is over all possible blue 
polygon configurations given the red ones. Since the weight of the blue polygons is 
trivial, this sum can be performed yielding new effective weights to the configurations 
in figure 1 ,  now of the remaining red polygons only. Thus each vertex which is clear 
of all red polygons has weight two, since there are two ways in which this vertex can 
be covered by blue polygons. Vertices touching on one or two red polygons allow 
only one blue configuration, and thus have weight one. Therefore, relative to the empty 
vertex the new weights are 

n ’ = n - 1  (4 .1)  

-precisely those of branch 0. This explains why the central charges of branch 0 and  
2 are related via a shift in n by one. It may be noted that this relation is generalisation 
of that found by Duplantier and Saleur [ 2 8 ]  between the supposed theta point of 
polymers ( n  = 0 )  and the low-temperature Ising ( n  = 1)  model. The equivalence 
between the branches 0 and 2 can also be used to predict the value of various exponents. 
Indeed the thermal exponent on branch 0 can be explained as the polarisation exponent 
of the O ( n )  model on branch 2 [ 4 ]  since the correlation function of the polarisation 
operator is the probability that two vertices are connected by a single polygon. This 
exponent has been identified [28] with ( p ,  q )  = ( m ,  m )  in the conformal grid, in good 
agreement with the numerical data in the range - 2  < n < 1 ,  where the equivalence is 
valid. The magnetic exponent governs the correlation function between the’two ends 
of an  open chain. One would be tempted to identify this with the exponent 2A((m + 
1 ) / 2 ,  ( m  + 1 ) / 2 ) ,  the magnetic exponent of the equivalent O( n + 1 )  model. However, 
in the associated covering polygon configurations the terminals of an open chain cannot 

= 1 G ’ = O  w’ = 1 
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be embedded. The way to map the open chain on an allowed set of configurations in 
the polygon covering model is to identify the endpoints of the chain as points where 
a red polygon changes into a blue one. Obviously the correlation function between 
two such operators is equal to the probability that the two operators sit on the same 
polygon. But this correlation function we just identified as the thermal one. Thus we 
expect equality between the thermal and magnetic exponents on branch 0, as corrobor- 
ated by the numerical data. In contrast, the values 2A[( m + 1)/2,  ( m  + 1)/2] appears 
as the interface exponent (table 4). 

Since we used the location of the critical points in the uuw space as a qualitative 
cue to their physical meaning, we are now confronted by the problem that the points 
on branch 0 and 3 are relatively close. Therefore both points are candidates for the 
same role in the phase diagram. Within the U = 0 plane, again using n = 0 as a guide 
for other values of n,  we expect a critical (in this case SAW) point, as well as a tricritical 
point, with a phase diagram like figure 6. This indicates the point on branch 0 as the 
tricritical point within this subspace, indeed the same role as we gave to branch 3. 
Since the two points d o  not appear to be in the same universality class, from their 
value of c, and even more so from the value of the thermal exponent, we now have 
two candidates for the tricritical point. However, we shall show that branch 0 is 
threefold unstable in the space of U, u and w, and thus cannot be an  ordinary tricritical 
point, though it may play this role in the special symmetry plane U = 0. 

Within the uw plane we find two correlation functions with relevant exponents. 
There is in the first place the thermal exponent governing the probability that two 
distant points sit on the same polygon and are thus connected by two lines. This 
operator is the thermodynamic conjugate of U. To get the exponent associated with 
w, one should inspect the probability function that two points are connected by four 
lines. This also follows readily from the Coulomb gas approach and  turns out to be 
the conformal exponent 2A( m, m - 1). This next-to-leading exponent turns out to be 
also relevant in the entire range -2 < n < 1, and is marginal at n = 1, as expected from 
the equivalence with the F model. Since we computed only leading exponents in each 
sector we have no numerical data for this exponent, except at n = -1, where the leading 
thermal exponent happened to vanish (see § 3.3). At this point the numerical value 
agrees accurately with the analytical value of i. 

The exponent associated with u governs the correlation function between two 
straight segments in a polygon configuration which meanders everywhere else. In order 
to map these configurations onto covering polygon configurations we again use the 
rule that bonds are turned into red lines and empty edges into blue lines. Thus the 
diagrams of the correlation function between the two straight segments are mapped 
into configurations of red and  blue polygons two of which intersect, leaving the crossing 
points connected by four lines. For this reason the exponent associated with the weight 
U is equal to that of U', and we have a total of three relevant exponents in the thermal 
sector of the model. Therefore the points of branch 0 only govern critical behaviour 
in the u = 0 plane. In this subspace they play the same role as branch 3 in the rest of 
the uuw space, but they are probably of a different universality class. 

4.4. Special cases 

While most of the discussion applies to entire branches, there are some specific points 
which deserve special attention. As mentioned above, there is in the first place the 
intersection at n = 1 of branch 0 and branch 3, where the model reduces to the transition 
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point of the F model. The point n = 1 on branch 2 is equivalent to a trivially solvable, 
disordered Ising model with four-spin interactions on the elementary faces. The n = 1 
points of branches 1 and  4 map onto critical free-fermion models with ferromagnetic 
and antiferromagnetic nearest-neighbour interactions respectively. Besides, we note 
again the equivalence between the points n = -1 of the branches 1 and 2 with those 
of branches 3 and 4 respectively. 

Besides the O( n ) ,  corner-cubic and loop gas representation of the partition sum, 
we can also write it as a 19-vertex model. This connection is made, just as in the case 
of the honeycomb model [3], by placing arrows on the bonds, thus giving a fixed but 
arbitrary orientation to each loop. It turns out that at the points n = 2 of our branches 
1 and 2 (or 3 and 4) the model is equivalent to the 19-vertex model of Zamolodchikov 
and Fateev (ZF) [33]t at  the point y = 3 r i / 4  ( r i / 4 ) .  A major consequence of this 
equivalence is that the central charge, which assumes the two different values 1 and  1 
at these two points, cannot be a constant in the whole of the ZF model. Alcaraz and 
Martins [34] recently found c =$  in the regime 0 s  -iy S r / 2 ,  generalising an earlier 
result of Affleck [35] for y = 0. 

The 19-vertex representation opens the way to yet another formulation of the model. 
The arrows can be interpreted as spin states of a spin-1 particle. Then the transfer 
matrix can be written in terms of angular momentum operators. In general this form 
is fairly complicated and unenlightening, but in one case, that is when n = 2 on branch 
0, it reduces to the (ordered) product 

L 

T= fl f (S,  * S,+l)2 
] = I  

(4.2) 

where the S are spin-1 angular momentum operators. The isotropy of this formulation, 
i.e. the O(3) symmetry, is a manifestation of the above-mentioned equivalence of 
branch 0 to an O(n+  1) model. This model is not critical but it is solvable as we know 
from its equivalence to the nine-state Potts model at its first-order transition point 
[36,37]. It implies that we have here another solvable isotropic spin-1 quantum chain. 
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Appendix. Enumeration of the connectivities 

The process of constructing the partition function of an  O ( n )  model on an  L x M 
lattice by means of the loop model transfer matrix was described in § 2 .  For actual 
calculations, we require an  enumeration of the L-point connectivities, that is the ways 
in which the L points on the dangling edges of row M are connected by the graph 
% M .  Each of the L points has three possibilities: 

(1) the point can be vacant, that is not covered by %,,,,; 
(2) the point can be connected by gM to one of the dangling bonds of row 0; 
(3) the point can be connected by gM to one and only one other point on row M. 

+ Equation 2.5f of that paper contains an error; the correct expression follows from its equation (A.16). 
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These possibilities are determined by the graph expansion of the O( n )  model in the 
absence of a bulk magnetic field. There exists a restriction to the ways in which the 
points on row M can be pairwise connected by g M .  If i < j < k < 1, and points i and 
k are connected, then points j and  1 cannot be connected, because loops are not 
allowed to intersect. Here we consider only the ‘allowed’ connectivities which satisfy 
this restriction. Moreover, we restrict ourselves to two subsets of the connectivities, 
namely the connectivities without points connected to the dangling bonds of row 0 
(the nd = 0 connectivities), and the connectivities with one and  only one point connected 
to row 0 (the nd = 1 connectivities). These two subsets require different enumerations. 
The nd = 0 connectivities serve to derive the free energy and the energy-like correlation 
length, while the n d  = 1 connectivities serve to derive the magnetic correlation length. 
For this reason, we refer to the nd=O connectivities as non-magnetic, and to those 
with n d  = 1 as magnetic ones. The problem of the enumeration of these connectivities 
will be solved in three steps: (1) the enumeration of the ‘dense connectivities’: a subset 
of the non-magnetic connectivities, namely the nd = 0 connectivities without vacant 
points, (2) the enumeration of the non-magnetic connectivities and (3) the enumeration 
of the magnetic connectivities. 

(1) The enumeration of the dense connectivities on 2m points appears to be closely 
related to that of the ‘restricted connectivities’ in the case of the Potts model [ 19,201. 
For clarity, we use a notation that is similar to that used in [20]. Consider a row of 
2m points, all of which are pairwise connected. This connectivity can be represented 
by a row of 2m positive integers ( i l ,  i 2 , .  . . , i z m )  such that ik = i ,  if points k and 1 are 
connected, and  ik f i, otherwise. The condition that loops are well nested (i.e. they 
d o  not intersect) excludes the situation j < k < 1 < n, i, = i, and ik = i n .  The number of 
distinct, dense connectivities on 2m points is denoted c,. A recursion relation for c, 
follows immediately from the well nestedness condition. Point 1 must be connected 
to one and  only one other point; and  the position of that point has to be even. Thus 
there exists a number k such that i l  = i 2 k .  Since i, f il for 1 < j < 2 k  and  2k < l s 2 m ,  
the connectivity decomposes into two independent pieces when points 1 and 2k are 
removed: one piece consists of 2 k - 2 points, and  the other of 2m - 2k points. Therefore 

m 

cm = c ck-Icm-k 
k = l  

with co= 1. 
Next, define a generating function P ( x )  as 

X 

P ( x ) =  c cmx. 
m=O 

Substitution of the recursion ( A l )  gives 

The correct solution of this equation is 

P ( x ) = ( 1 - m)/ (2x). 

Taylor expansion of P ( x )  shows that 

c, ={(4n-2 ) / (n+ l ) ) cm- ,  
which implies, since co = 1 ,  

c ,  = ( 2 m )  ! /{  m ! ( m  + 1) !} 
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This is the same expression as for the number of m-point connectivities in the case of 
the Potts model. In the limit m --* cc we observe that c, - 4". 

In order to establish a correspondence between the dense connectivities on 2m 
points and  the integers 1 , 2 , .  . . , c, we represent connectivities by a row of positive 
integers as mentioned above. A function p is defined on these rows as 

('47) 
where k is determined by i, = i Z h .  The function p enables one to define an ordering 
of the 2m-point dense connectivities by the following recursive rule. The connectivity 
( i, , i,, . . . , i 2 m )  precedes the connectivity ( j ,  , j z ,  . . . , j 2 " , )  if one of the three following 
conditions is satisfied: 

p ( i l ,  i 2 , .  . . , i , ,n)  = k 

( i )  p ( i l ,  i ? ,  . . . , i 2 m ) < P ( j i r j z r . .  . ,j,,); 

( i i )  p ( i l , i 2  , . . . ,  i z m ) = p ( j l , j r , . .  . , j z m )  and ( i 2 k + 1  , . . . ,  izm) precedes 
( j * L t l , .  . . , j 2 m ) ;  

(iii) P ( ~ I ,  i z ,  . . . ,  i , , ) = P ( j i , j z  , . . . ,  Jzn l ) and( i , k+ , , . .  . ,  i : m ) = ( j 2 k + ~  , . . . ,  jzm)and 
( i2 ,  . . . , i 2 k - l )  precedes ( j z ,  . . . , j 2 h - l )  
where k is determined by (A7). The meaning of the second equality of (iii) is that 
i, = in if and only if j ,  = j n .  If these conditions d o  not provide a decision which 
connectivity precedes the other, the connectivities are equal. On the basis of these 
conditions, the unique number v( i, , i 2 ,  . . . , i 2 , )  of a 2m-point connectivity is deter- 
mined recursively as follows: 
U( i, , iz , . . . 

where k is determined by (A7). The first term on the right-hand side is the number 
of connectivities ( j ,  , j 2 ,  . . . ,Jz,,,) for which p ( j ,  , j , ,  . . . ,jz,,,) < k. The second term is 
the number of connectivities with p ( j , ,  j z , .  . . , j m )  = k and  for which 
v ( j zk+ , ,  . . . , jZ,,,)< g ( i Z k t l , .  . . , i2,). Finally, the third term is the number of (2k-2)- 
point connectivities which precede ( i 2 , .  . . , i 2 h - , ) ,  plus one. 

( 2 )  The enumeration of the non-magnetic connectivities. At present, we consider 
connectivities which have, apart from a number of pairwise-connected points, also a 
number of points that are 'vacant', i.e. not connected to any other point. The enumer- 
ation of these connectivities resembles that of the 'general connectivities' in the case 
of the Potts model in a magnetic field [ 191 or  with vacancies. The L-point non-magnetic 
connectivities of the loop model are now represented by a row of non-negative integers 
( i ,  , i,, . . . , i L )  such that 

ih = 0 if  and only if point i is vacant 
if and only if point I is connected to point m. { i, = i, > 0 

Consider such a connectivity with precisely p pairs of connected points (0 s p s [ L/2], 
where [ L / 2 ]  stands for the integer part of L / 2 ) .  There are also L-2p  vacant points, 

which can be distributed in (k) ways. The connectivities on the 2p points that are 

not vacant are precisely the dense connectivities described earlier. Thus, the total 
number uL of non-magnetic connectivities on L points is 
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An ordering of these connectivities can be obtained from the number of zeros, a 
lexicographic ordering on the basis of the zeros, and the dense connectivity that remains 
when the zeros are removed. For the lexicographic part of the enumeration, we 
recursively define a function 4 on a rob of m non-negative integers with M' non-zeros: 

if M? = 0 or  m = 1 ; r 1  

Consider a connectivity ( i ,  , i 2 ,  , . . , i L )  with U connected pairs. Denote by 
( J , ,  j 2 , .  . . , j 2 u )  the sequence that remains when the zeros are removed. A unique 
number 7 is assigned as follows: 

The first term on the right-hand side is the number of connectivities with more than 
U pairs of non-zeros. The second term is the number of connectivities with U pairs of 
non-zeros that precede ( i ,  , i 2 ,  . . . , i L )  on  the basis of the lexicographic ordering. 
Finally, the last term is the number of connectivities that precede ( i ,  , i l ,  . . . , i L )  on 
the basis of the ordering of the dense connectivities that remain when the zeros are 
removed, plus one. 

(3) The enumeration of the magnetic connectivities. In  addition to connected pairs 
and vacant points, we now also have one point (with position k) connected to a 
dangling bond of row 0. We associate this point with an integer ik = -1 in the row 
( i ,  , i 2 ,  . . . , i L )  that represents the magnetic connectivity. Since there is no  restriction 
on k, the total number bL of magnetic connectivities is 

b L  = La,_, . ( A l l )  

Table 6 .  The total number aL of nd = 0 connectivities and the number b,. of nd = 1 con- 
nectivities are given for sekeral values of L. Calculations in the nd=O (non-magnetic) 
subspace were performed up to finite size 14, which necessitated the enumeration of the 
connectivities up to L = 16. Calculations for the nd = 1 (magnetic) subspace were performed 
up to systems of size 12, so that magnetic connectivities up to L = 14 had to be enumerated. 

2 2 
3 4 
4 9 
5 21 
6 5 1  
7 127 
8 323 
9 835 

10 2 188 
1 1  5 798 
12 15 511 
13 41 835 
14 113 634 
15 310 572 
16 853 467 

2 
6 

16 
45 

126 
357 

1016 
2 907 
8 350 

24 068 
69 576 

201 643 
585 690 
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These connectivities are ordered on the basis of the value of k and  the ordering of the 
non-magnetic connectivities. Thus, the number w associated with the connectivity is 

o.J(i,,i2 , . . . ,  i L ) = ( k - l ) a L - l + ~ ( i l , i Z  , . . . ,  i k - 1 ,  i k + l ,  . . . ,  iL) .  
The numbers aL and bL are given in table 6 for several values of L. For large L, the 
leading power-law behaviour of aL and bL is given by 

a L  b L  lim -= lim -=3. 
L - =  a L - l  L-W bL-l 

Inverse algorithms, which map positive integers onto the connectivities, can be construc- 
ted by similar methods. 
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